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Traditional Reinforcement Learning
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Traditional Reinforcement Learning
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Main Limitation of this Approach

e Interacting in the environment can be expensive!
e State-of-the-art can take hundreds of thousands of episodes to learn
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Big Question:

e Can we train our policies outside of the environment?

Figure 1. A World Model, from Scott McCloud’s Understanding
Comics. (McCloud, 1993; E, 2012)
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Problem Setting

Working On Visual Control Problems (within DeepMind Control Suite)
e Formulate Visual Control as a Partially Observable Markov Decision Process (POMDP) with:
o Discrete time-stepst € [1; T]
o Continuous vector-valued, agent-generated actions  a; ~ p(a;|o<;, a-y)

o High-dimensional observations, scalar rewards generated by the environment 0y, 7 ~ p(0y. 7|04, act))
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Prior Work

World Models (David Ha, Jurgen Schmidhuber (2018))

% Learn a dynamics model for a RL environment

Screenshot Image Reconstruction

Load Random Screenshot Randomize Z
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Prior Work

World Models (David Ha, Jurgen Schmidhuber (2018))
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Prior Work

Learning Latent Dynamics for Planning with Pixels (Hafner et. al (2019))

% Learn a dynamics model for different tasks in the DeepMind Control suite

2 5' - g
S Il i =
: " £% %5 3c %2 o% % 3
Rad 5 ) S S8 = £ = 2 B
‘ ; ' - Method Modality Episodes O HR OF &Ko OO0 B2
- ) /
A3C proprioceptive 100,000 558 285 214 129 105 311
: D4PG pixels 100,000 862 967 524 985 980 968
PlaNet (ours) pixels 1,000 821 832 662 700 930 951
CEM + true simulator ~ simulator state 0 850 964 656 825 993 994
(a) Cartpole (b) Reacher (c) Cheetah (d) Finger - -
Data efficiency gain PlaNet over D4PG (factor) 250 40 500+ 300 100 90
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Learning Latent Dynamics for Planning with Pixels (Hafner et. al (2019))
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Learn a dynamics model for different tasks in the DeepMind Control suite
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Plan only using the latent space of the dynamics model (PlaNet)

K/
L X4

Generalize to include multi-step predictions in latent space

R/
L ¥4

Performance on par with current state-of-the-art model-free approaches, with ~200x less

environment interactions
% Has to used gradient-free planning

Cannot approximate sum of rewards beyond planning horizon

Method Modality Episodes g

A3C proprioceptive 100,000 558 285 214 129 105 311
D4PG pixels 100,000 862 967 524 985 980 968
PlaNet (ours) pixels 1,000 821 832 662 700 930 951
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Main Contributions

e lterative approach for exploring in the environment and gathering new observations
o  World Models paper randomly explored in the environment to create the dynamics model

o Instead, explore the environment according to our current policy
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e Rather than just predict actions given a state, predict state values
o Allows for faster convergence to an optimal policy by learning long-horizon behaviors
o  Given value function setup allows for back propagation of value function through dynamics

model’s latent space
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Main Contributions

e lterative approach for exploring in the environment and gathering new observations
o  World Models paper randomly explored in the environment to create the dynamics model
o Instead, explore the environment according to our current policy
e Rather than just predict actions given a state, predict state values
o Allows for faster convergence to an optimal policy by learning long-horizon behaviors
o  Given value function setup allows for back propagation of value function through dynamics
model’s latent space
e Demonstration of Efficacy of Approach
o Pair Dreamer with different representation learning approaches
o Analyze performance in the DeepMind Control Suite

o Exhibit state-of-the-art performance using the same hyperparameters for every task
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Proposed Approach
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Proposed Approach
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Proposed Approach
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Algorithm, formally

Algorithm 1: Dreamer

Initialize dataset D with S random seed episodes.
Initialize neural network parameters 6, ¢, 1) randomly.
while not converged do

for update step c = 1..C do

// Dynamics learning

Draw B data sequences {(a;, 0, 7¢)}o1F ~ D.
Compute model states s; ~ pg(s¢ | St—1,at—1,0¢).
Update 6 using representation learning.

// Behavior learning

Imagine trajectories {(s,,a,)}: from each s,.
Predict rewards E (o (7 | s;)) and values vy (s, ).
Compute value estimates V»(s,) via Equation 6.

Update ¢ < ¢ + aV, Et:;lf Va(sr).
Update 3 ¢ ¢ — aVy 57 Loy (s,) - Va(so) ||

/ Environment interaction

1 ¢ env.reset ()

for time stept = 1..T do

Compute s; ~ pg(st | St—1,at—1, 0¢) from history.
Compute a; ~ gy (a¢ | s;) with the action model.
Add exploration noise to action.

Tt,0141 < env.step (a;) .

Add experience to dataset D < D U {(04, az, 7)1}

b

=)

Model components

Representation  pg(st | St-1,at-1,0t)
Transition qo(st | 8¢-1,a61)
Reward qo(re | s¢)

Action qg(as | s¢)

Value vy(8t)

Hyper parameters

Imagination horizon
Learning rate

Seed episodes S
Collect interval C
Batch size B
Sequence length L
H
e
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for time stept = 1..T do
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=)

Model components
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RN AQ®m
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Formulation for Value Estimates

t+H
VR(ST) = qu,(I¢ ( Z Tn);

h—1

VN (sr) = Eqyq, ( > AT+ vh_va(sh)) with b = min(r + k,¢ + H),
Ho1

Va(s,) = (1= Z AR (3:) 27 VR (55);

n=1
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Learning Objective

t+H tHH o 9
mj\xqu,% ( Z V)‘(ST)), (7) minEg, 4. ( ; 5”1@(&) — Va(sr)) ‘ ) (8)

T=t ¥

CS391R: Robot Learning (Fall 2022) 31




Learning Objective

t+H tHH o 5
md?xqu,% ( Z V)\(ST)), (7 min E,, .. ( Z -2—“1),/,(87) — VA(ST))” ) 3)

7=t ¥ T=t

Value estimates depend on reward and Model components

value predictions... Representation pg(sy | S¢-1, s-1,0¢)
Transition qo(st | St-1,ae1)
Reward and value predictions depend
on imagined states... iz:;'z;d Ze ((zt || 'it))
p\at | St
Imagined states depend on imagined Value Vo (5¢)
actions...
t+H
We can use back propagation! V¢ qu do ( E ’T_it V}\ (ST ))
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Experimental Setup

«* Performance evaluated on visual control tasks in the DeepMind Control Suite

«* Evaluated against:

O  PlaNet, previous latent imagination state-of-the-art

o D4PG, top model-free agent

o A3C, state-of-the-art actor-critic method

(a) Cartpole (b) Reacher (c) Cheetah (d) Finger (e) Cup
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Experimental Results
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Experimental Results
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Experimental Results

Acrobot Swingup Cheetah Run Cup Catch Finger Spin
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Discussion of Results

«* Demonstrate that Dreamer is able to be as efficient as PlaNet while matching or even outperforming
state-of-the-art model-free agents

% Show that Dreamer is able to learn long-horizon behaviors from beyond the horizon, which
outperforms more short-sighted approaches

« Performance of Dreamer is affected by the method of representation learning used

o Better representation learning performance = Better Dreamer performance
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Critique / Limitations / Open Issues

e Ability to successfully utilize latent imagination depends on strength of representation learner
o Limits the breadth of tasks that this can be applied to rather than traditional reinforcement
learning
e Different Value estimation functions are not evaluated (besides the trivial one)
o To what extent can we improve on this equation, leading to faster learning?

o This is the main insight of the paper, yet doesn’t get very much discussion time
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Future Work

«* Learn more complex visual tasks with sparse rewards (e.g. Atari games, addressed by DreamerV2)
«* Apply latent imagination to more input modalities, potentially getting us closer to real-world uses

*%* Could we experiment with different, more specialized representation learning approaches to perform

more task-specific learning through imagination?
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Extended Readings

< World Models

% Learning Latent Dynamics for Planning With Pixels (PlaNet)

4 Dream to Explore: Adaptive Simulations for Autonomous Systems

4 Mastering Atari with Discrete World Models (DreamerV2)
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https://arxiv.org/abs/1803.10122
https://arxiv.org/pdf/1811.04551.pdf
https://arxiv.org/pdf/2110.14157v1.pdf
https://arxiv.org/pdf/2010.02193.pdf

Summary

%* Reinforcement learning traditionally involves many interactions with the environment
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Summary

** Reinforcement learning traditionally involves many interactions with the environment
%* Environment interactions can be computationally expensive
«* We can instead train in a latent space, limiting need for interactions with the environment

%* Prior works used a fixed imagination horizon (short-sighted behaviors) and had to use derivative-free
optimization

%* By computing an accurate value estimation, we can perform back-propagation

CS391R: Robot Learning (Fall 2022) 45




Summary

%* Reinforcement learning traditionally involves many interactions with the environment
%* Environment interactions can be computationally expensive
*%* We can instead train in a latent space, limiting need for interactions with the environment

«* Prior works used a fixed imagination horizon (short-sighted behaviors) and had to use derivative-free
optimization
%* By computing an accurate value estimation, we can perform back-propagation

*%* Achieved state-of-the-art data efficiency, computational time, and performance
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Questions For Discussion (slide hidden)

%* So far, all the readings | have seen in this area have either been in environments for computer games

(Tetris, Atari games, Doom, etc) or in task simulators (e.g DeepMind Control Suite). How can we apply
these concepts towards learning to walk on a real robot? Would doing so reveal weaknesses of the

approach?
%* While Dreamer seems to perform remarkably well on most tasks in the DeepMind control suite, it really

struggles on the “finger spin” task. Why is this? Could understanding this issue provide insight on
limitations of the approach?

% More of an abstract question, but many times in machine learning we attempt to make artificial
intelligence systems that model human behaviors. Is this “learning through imagination” idea
something humans frequently do? If not, could we learn something from this different approach

ourselves, perhaps to be better mentally prepared for upcoming challenges?
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